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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 7
Solutions by J. Barber and T. Bunn

Reading:
105 Notes 8.1-8.3, 6.1-6.2 (again).
Hand & Finch 4.7, 5.1.

1.
[This a (hopefully clearer) version of Hand &
Finch 4.17, “tetherball”.] A mass m is at-
tached to a weightless string that initially has
a length s0. The other end of the string is
attached to a post of radius a. Neglect the ef-
fect of gravity. Suppose that the mass is set
into motion. It is given an initial velocity of
magnitude v0 directed so that the string re-
mains taut. The string wraps itself around the
post, causing the mass to spiral inward toward
it.
(a)
Write the Lagrangian in terms of ẋ and ẏ, the
cartesian velocity components of the mass. Is
there a potential energy term?
Solution:

L =
m

2
(
ẋ2 + ẏ2

)
There is no potential energy term.
(b)
Use as generalized coordinates s(t), the length of
the part of the string that is not yet in contact
with the post, and ψ(t), the azimuthal angle at
which the string barely fails to make contact with
the post. Express ẋ and ẏ in terms of these gen-
eralized coordinates and their time derivatives.
Solution:
Letting the origin be at the center of the post,
and letting ψ be the counter-clockwise angle
from the x axis, we can write x and y as:

x = a cosψ − s sinψ
y = a sinψ + s cosψ

Taking the time derivative of these expressions

yields:

ẋ = −aψ̇ sinψ − ṡ sinψ − sψ̇ cosψ

ẏ = +aψ̇ cosψ + ṡ cosψ − sψ̇ sinψ

(c)
Write a (constraint) equation relating ṡ to ψ̇.
Use it to greatly simplify your answers for (b).
Rewrite the Lagrangian using s as the only gen-
eralized coordinate.
Solution:
Since the string is winding up on the post, and
thus decreasing its length, we must have:

ṡ = −aψ̇
Plugging this into our expressions for ẋ and ẏ
gives us:

ẋ =
sṡ

a
cosψ

ẏ =
sṡ

a
sinψ

And so the lagrangian becomes:

L =
m

2a2
s2ṡ2

(d)
Use the Euler-Lagrange equation to obtain an
equation of motion for s. (You don’t need to
solve it.)
Solution:

d

dt

(
∂L
∂ṡ

)
=
∂L
∂s

d

dt

(m
a2
s2ṡ

)
=
m

a2
sṡ2

ss̈+ ṡ2 = 0
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(e)
Since the Lagrangian has no explicit time de-
pendence, and it depends quadratically on ṡ,
the total energy is conserved. Write an equa-
tion setting the initial energy (expressed in
terms of v0) equal to the energy at an arbi-
trary value of s (expressed in terms of s and
ṡ).
Solution:

E = H =
∂L
∂ṡ
ṡ− L

=
m

2a2
s2ṡ2 =

m

2
v2o

(f)
Use this equation to express dt in terms of ds
multiplied by a function of s. Integrate it to solve
for the time T that elapses before the mass hits
the post. You should obtain the simple result

T =
s20

2av0
.

Solution:

ṡ2 =
a2v2o
s2

ṡ = −avo

s

dt = − s

avo
ds

T = −
∫ 0

so

s

avo
ds

=
1
avo

∫ so

0

s ds

=
s2o

2avo

Note that this could also be found by realizing
that the DE in part (d) can also be written as
d
dt (sṡ) = 0. This, along with the initial condi-
tions that s(0) = so and ṡ(0) = −avo

so
(obtainable

from the energy expression), allows us to show
that:

s(t) =
√
s2o − 2avot

(g)
Is the angular momentum of the mass about the

axis of the post conserved in this problem? Why
or why not?
Solution:
Since the mass is constrained to lie in the xy
plane, there is only a z component of angular
momentum:

Lz = m(xẏ − yẋ)

= −ms
2ṡ

a

whose magnitude is diminishing with time. An-
gular momentum is not conserved because the
string is not directed toward the center of the
post. Hence the tension in the string exerts a
torque on the mass with respect to the post’s
center.

2.
Hand & Finch 4.19.
Solution:
(a)

τ = 2π
√
µ

k
a

3
2 (Hand & Finch Eq. 4.61) ,

where k = GMsme, µ ≈ me, and a = Re. Also,
τ = 1 year = 3.15 × 107 s. This allows us to
solve for Ms:

Ms =
4π2Re

3

Gτ2

= 1.97 × 1030 kg

(b)

me =
4π2Rm

3

Gτm2

Ms

me
=
Re

3

τe2
τm

2

Rm
3

= 3.38 × 105

me = Ms
me

Ms

= 5.83 × 1024 kg

This is close to the actual value of 5.98 × 1024

kg. The density of the earth is

ρe =
me
4π
3 re

3

= 5.36 × 103
kg
m3

= 5.36
g

cm3
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The mass of the moon (1.23% of the earth’s
mass) could be similarly determined by observ-
ing the effects of its gravity on other objects,
such as spacecraft, orbiting around it. Also, one
could compare the height of the tides when the
sun is aligned vs. anti-aligned with the moon:
knowing the radii of the moon’s and earth’s or-
bits from their periods, one can solve for the ratio
of the moon’s and sun’s masses (see problem 3).
Finally, the moon’s mass may be measured from
its perturbations on the earth’s orbit – but this
is a dense topic.

3.
Hand & Finch 4.21.
Solution:
(a)
To quote Feynman: “The pull of the Moon
for the Earth and for the water is ‘balanced’
at the center. But the water which is closer
to the Moon is pulled more than the average
and the water which is farther away from it
is pulled less than the average. Furthermore,
the water can flow while the more rigid Earth
cannot...”(Feynman Lectures I). So the near wa-
ter gets pulled away from the Earth, which in
turn gets pulled away from the far water. This
causes a net ‘elongation’ of the Earth and its
oceans, directed approximately along the line
joining the Earth and Moon. There is one high
tide at the front of the Earth and one at the
back.
(b)
Since the Earth is rotating, the direction of
the elongation of the Earth is always changing
with respect to the Earth’s surface. The dual
bulges of water on either side of the Earth can-
not change their position instantly (because of
viscous friction and the water’s inertia) so there
is a constant phase lag between the direction
of elongation and the Earth-Moon direction.
A similar tidal effect can be used to explain
why only one side of the Moon ever faces the
Earth.
(c)

Ftide, sun = Fs−e(Re − re) − Fs−e(Re + re)

≈ 2re
∂Fs−e

∂r

∣∣∣
Re

=
4reGMsme

Re
3

Ftide, moon ≈ 2re
∂Fm−e

∂r

∣∣∣
Rm

=
4reGmmme

Rm
3

Ftide, sun
Ftide, moon

=
Ms

Re
3

Rm
3

mm

= 0.45

The two tidal forces are of the same order of
magnitude.

4.
Consider a particle of mass m that is constrained
to move on the surface of a paraboloid whose
equation (in cylindical coordinates) is r2 = 4az.
If the particle is subject to a gravitational force
−mgẑ, show that the frequency of small os-
cillations about a circular orbit with radius
ρ =

√
4az0 is

ω =
√

2g
a+ z0.

Solution:
In cylindrical coordinates (r, θ, z), we write the
Lagrangian as

L = 1
2mṙ

2 + 1
2mr

2θ̇2 + 1
2mż

2 −mgz .

Use the equation of constraint r2 = 4az to get
rid of z:

L = 1
2mṙ

2 +
mr2ṙ2

8a2
+ 1
2mr

2θ̇2 − mgr2

4a
.

The Euler-Lagrange equation for θ just expresses
angular momentum conservation: l ≡ mr2θ̇ is
constant. The equation for r is

r̈

(
1 +

r2

4a2

)
+
rṙ2

4a2
=

l2

m2r3
− gr

2a
, (1)

where we have substituted θ̇ = l/mr2 and can-
celed a factor m. Choose ρ such that r(t) = ρ
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is the constant-radius solution to this equation,
and consider small perturbations about this so-
lution: r(t) = ρ + x(t), with x � ρ. Drop all
terms with more than one power of x in our
differential equation for r, and you find that

ẍ

(
1 +

ρ2

4a2

)
=

l2

m2(ρ+ x)3
− g(ρ+ x)

2a

=
l2

m2ρ3

(
1 − 3x

ρ

)
− g

2a
(ρ+ x) .

(The last step comes from a Taylor series expan-
sion of (ρ + x)−3.) Since r(t) = ρ is a solution
to equation (1), we know that l2/m2ρ3 = gρ/2a.
(This comes from setting ṙ = r̈ = 0 in equa-
tion (1).) Use this to simplify the differential
equation for x:

ẍ

(
1 +

ρ2

4a2

)
+

2g
a
x = 0

This is the equation for a harmonic oscillator
with frequency

ω =

√
2g/a

1 + ρ2/4a2
=

√
2g

a+ z0
.

5.
An orbit that is almost circular can be con-
sidered to be a circular orbit to which a small
perturbation has been applied. Take ρ to be the
(unperturbed) circular orbit radius and define

g(r) =
1
µ

∂U(r)
∂r

,

where µ is the reduced mass and U is an arbi-
trary potential. Set the radius r = ρ+ x, where
x is a small perturbation.
(a)
Starting from the differential equation for r and
using the fact that the angular momentum l is
constant, substitute r = ρ+ x. Retaining terms
only to first order in x, Taylor expand g(r) about
the point r = ρ, and show that x satisfies the
differential equation

ẍ+
[3g(ρ)

ρ
+ g′(ρ)

]
x = 0 ,

where g′(ρ) is dg/dr evaluated at r = ρ.
Solution:
The Lagrangian for a particle moving in a central
force field is

L = 1
2µṙ

2 + 1
2µr

2θ̇2 − U(r)

where r and θ are polar coordinates. The Euler-
Lagrange equation for θ says that l = µr2θ̇ is
constant, and the equation for r is

µr̈ = µrθ̇2 − U ′ =
l2

µr3
− µg(r)

Let ρ be the radius of the constant-r solution to
this equation. Then ρ satisfies l2/µ2ρ3 = g(ρ).
Now we can look for solutions of the form
r(t) = ρ+ x(t), with x� ρ. Dropping all terms
of higher than first order in x, our differential
equation becomes

ẍ =
l2

µ2ρ3

(
1 − 3x

ρ

)
− g(ρ) − xg′(ρ)

where we have done a Taylor expansion in x of
(ρ + x)−3 and g(ρ + x). Now use our equation
for ρ above to simplify this:

ẍ = g(ρ)
(

1 − 3x
ρ

)
− g(ρ) − xg′(ρ)

= −
(

3g(ρ)
ρ

+ g′(ρ)
)
x

(b)
Taking the force law to be F (r) = −kr−n, where
n is an integer, show that the angle between two
successive values of r = rmax (the “apsidal an-
gle”) is 2π/

√
3 − n. Thus, if n > −6, show that

in general a closed orbit will result only for the
harmonic oscillator force and the inverse square
law force.
Solution:
g(r) = k

µr
−n, so g′(r) = − k

µnr
−(n+1). Plug that

into our equation for ẍ and you’ll find that

ẍ+
(
k

µ
ρ−(n+1)(3 − n)

)
x = 0.
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This is the equation for a harmonic oscillator
with frequency

ωx =
(
k

µ
ρ−(n+1)(3 − n)

)1/2

We need to compare this to ωθ, the angular fre-
quency of the unperturbed circular motion. Use
the centripetal force equation Fcent = µρθ̇2 to get

ωθ = θ̇ =
(
U ′

µρ

)1/2
=

(
k

µ
ρ−(n+1)

)1/2

Successive maxima of r occur when ωxt increases
by 2π, and the angle through which the particle
has moved in that time is

∆θ = ωθt = 2π
ωθ

ωx
=

2π√
3 − n

If ∆θ/2π is a rational number, say j/k with j
and k integers, then after j orbits the path will
close. If ∆θ is irrational, the orbit will never
close. Looking at our expression for ∆θ, it’s
clear that the orbit closes only if 3 − n is a per-
fect square, which only happens for n > −6 if
n = 2 or n = −1.

6.
Consider the motion of a particle in a central
force field F = −k/r2 + C/r3.
(a)
Show that the equation of the orbit can be put
in the form

1
r

=
1 + ε cosαθ
a(1 − ε2)

,

which is an ellipse for α = 1, but is a precessing
ellipse for α 	= 1.
Solution:
Start from Eq. (7.8) in the lecture notes:

d2u

dθ2
+ u =

µk

l2

Multiply it by u2l2/µ. Then, in place of the
gravitational force −ku2, substitute the full force
−ku2 + Cu3. This yields

l2u2

m
(u′′ + u) = ku2 − Cu3 ,

where u′′ denotes d2u/dθ2. Rearranging this
equation, we get

u′′ +
(

1 +
mC

l2

)
u− km

l2
= 0

This looks like the differential equation for a
harmonic oscillator, plus a constant displace-
ment. So we know it has a solution of the form
u = A+B cosαθ. Substituting this into the dif-
ferential equation, we find that we get a valid
solution as long as

α =

√
1 +

mC

l2
and A =

km/l2

1 +mC/l2

(B is arbitrary). Comparing this with the form
given for a precessing ellipse:

u =
1
r

=
1 + ε cosαθ
a(1 − ε2)

,

we find that a(1 − ε2) = 1/A and a(1 − ε2)/ε =
1/B. If you wanted to, you could solve these for
a and ε, but there’s no need to.
(b)
The precessing motion may be described in terms
of the rate of precession of the perihelion, where
the term perihelion is used (loosely) to denote
any of the turning points of the orbit. Derive
an approximate expression for the rate of pre-
cession when α is close to unity, in terms of the
dimensionless quantity η = C/ka.
Solution:
How fast is the ellipse precessing? Well, between
successive maxima of r, θ increases by 2π/α, and
if the ellipse weren’t precessing at all, that angle
would be 2π. So the amount of precession per
revolution is ∆θ = 2π(1−1/α). Now let’s assume
α is close to 1. That means that mC/l2 � 1.
In this approximation, we can expand 1/α =
(1 +mC/l2)−1/2 ≈ 1 −mC/2l2. (This is just a
Taylor expansion.) So the precession rate is

∆θ =
πmC

l2
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per orbit. To write this in terms of η, just note
from above that

a(1 − ε2) =
l2

km
(1 +mC/l2) ≈ l2/km .

(Why were we able to drop the mC/l2? Because
it is small compared to 1.) Rearranging this, we
get

m

l2
=

1
ka(1 − ε2)

,

and plugging that into our expression for ∆θ, we
get

∆θ =
πC

ka(1 − ε2)
=

πη

(1 − ε2)
.

(c)
The ratio η is a measure of the strength of the
perturbing inverse cube term relative to the main
inverse square term of the force. Show that the
rate of precession of Mercury’s perihelion (40′′ of
arc per century) could be accounted for classi-
cally, if η = 1.42 × 10−7. [Mercury’s period and
eccentricity are 0.24 y and 0.206, respectively.]
Solution:
If η = 1.42 × 10−7 and ε = 0.206, then ∆θ =
4.66 × 10−7 radians = 9.61′′ × 10−2. That’s the
precession per orbit, so to get the precession per
century, we need to multiply by the number of
orbits per century, 100/0.24. Then we find that
∆θ = 40′′/century.

7.
A He nucleus with velocity v = 0.05c is nor-
mally incident on an Au foil that is 1 micron
(1× 10−6 m) thick. What is the probability that
it will scatter into the backward hemisphere,
i.e. bounce off the foil? (Please supply a num-
ber.)
Solution:
First, what is the cross section that will result
in the scattering of a He nucleus into the back

hemisphere from a single Au nucleus?

σback =
∫ θ=π

θ=π
2

dσ

dΩ
dΩ

=
(
Zze2

2µv2o

)2 ∫ π

π
2

2π sin θ dθ
sin4 θ

2

= 4π
(
Zze2

2µv2o

)2 ∫ π

π
2

sin θ
2 cos θ

2 dθ

sin4 θ
2

= 8π
(
Zze2

2µv2o

)2 ∫ π
2

π
4

cosu du
sin3u

(u =
θ

2
)

= π

(
Zze2

µv2o

)2

We also need the number of Au nuclei per unit
area that the He nucleus sees in the foil. With a
little thought, it can be seen that

number
unit Area

=
ρAut

mAu
,

where t is the foil thickness. The probability of
backwards scattering from the foil is

Pback =
σback

Areafoil
× (# of Au nuclei in foil)

= σback × number
unit Area

=
πρAut

mAu

(
Zze2

µv2o

)2

The numerical values (note we are working in
cgs) of all these quantities are:

ρAu = 19.28
g

cm3

t = 10−4 cm

mAu = 3.28 × 10−22 g
Z = 79
z = 2

e = 4.8 × 10−10 esu

µ ≈ mHe = 6.67 × 10−24 g

vo = .05 c = 1.5 × 109
cm
s

Plugging in these values yields Pback = 0.00011,
so most of the He nuclei do pass through the foil.
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8.
Calculate the differential cross section dσ/dΩ
and the total cross section σT for the elastic
scattering of a point particle from an impen-
etrable sphere; i.e. the potential is given by
U(r) = 0, r > a; U(r) = ∞, r < a.

Solution:
Consider a single particle approaching with im-
pact parameter b and bouncing off of the sphere.
Let θ be the scattering angle and let α be the an-
gle the particle’s trajectory makes with the nor-
mal to the sphere. The angle of reflection off the
sphere equals the angle of incidence α. Therefore
2α+ θ = π. Also, the angle θ is related to b by

b = a sinα

= a sin
π − θ

2

= a cos
θ

2

The differential cross section is given by

dσ

dΩ
=
b(θ)
sin θ

∣∣∣∣dbdθ
∣∣∣∣

=
a cos θ

2

sin θ

∣∣∣∣−a2 sin
θ

2

∣∣∣∣
=
a2

4

So dσ
dΩ is constant. The total cross section is

σ =
∫
dσ

dΩ
dΩ

=
a2

4

∫ π

0

2π sin θ dθ = πa2

This is the cross-sectional area of the sphere,
which is what we should expect.


